AlphaGo是怎么学会下围棋的

2020-06-27 18:53

AlphaGo是怎么学会下围棋的


 

  由Google的子公司Deep Mind创建的人工智能系统AlphaGo,不久前在一场围棋比赛中以4:1的成绩战胜了人类冠军李世石。此事有何重大意义?毕竟,在1997年,IBM“深蓝”击败加里·卡斯帕罗夫后,电脑已经在国际象棋上超越了人类。人们为什么要对AlphaGo的胜利大惊小怪呢?

 

  和国际象棋一样,围棋也是一种高度复杂的策略性游戏,不可能靠巧合和运气取胜。两名棋手轮番将黑色或白色的棋子落在纵横19道线的网格棋盘上,一旦棋子的四面被另一色棋子包围,就要被从棋盘上提走,最终在棋盘上留下棋子多的那一方获胜。

 

  然而和国际象棋不一样的是,没有人能解释顶尖水平的围棋棋手是怎么下棋的。我们发现,顶级棋手本人也无法解释他们为什么下得那么好。人类的许多能力中存在这样的不自知,从在车流中驾驶汽车,到辨识一张面孔。对于这一怪象,哲学家、科学家迈克尔·波兰尼有精彩的概括,他说:“我们知道的,比我们可言说的多。”这种现象后来就被称为“波兰尼悖论”。

 

  波兰尼悖论并没有阻止我们用电脑完成一些复杂的工作,比如处理工资单、优化航班安排、转送电话信号和计算税单。然而,任何一个写过传统电脑程序的人都会告诉你,要想将这些事务自动化,必须极度缜密地向电脑解释人类要它做什么。

 

  这样的电脑编程方式是有很大局限的,在很多领域无法应用,比如我们知道但不可言说的围棋,或者对照片中寻常物品的识别、人类语言间的转译和疾病的诊断等——多年来,基于规则的编程方法在这些事务上几无建树。

 

  围棋的可能走法比宇宙间的原子总数还多,即使最快的电脑也只能模拟微不足道的一小部分。更糟的是,我们甚至说不清该从哪一步入手进行探索。

 

  这次有什么不同?AlphaGo的胜利清晰地呈现了一种新方法的威力,这种方法并不是将聪明的策略编入电脑中,而是建造了一个能学习制胜策略的系统,这种系统在几乎完全自主的情况下,通过观看胜负实例来学习。


上一篇: 褊狭的人情味
下一篇:没有了
扩展阅读
 木心短语
木心短语

岁月不饶人,我亦未曾饶过岁月。 不后悔,莫过于做好三件事:一是知道如何选择,二是明白如何坚持,三是懂得如...点击了解…

 只活在这一刻(1)
只活在这一刻(1)

人生快乐么么茶(全文在线阅读) 第十章 只活在这一刻(1) 不论在人间付出多少心血、多少辛苦,切莫将心念停留于过去...点击了解…